Abstract

Streptomyces toyocaensis produces A47934, a teicoplanin-like type-IV glycopeptide with antibiotic activity against methicillin-resistant Staphylococcus aureus. A47934 differs from the type-I vancomycin glycopeptides, which possess a tricyclic peptide backbone, by the presence of an additional ring closure between the aromatic amino acids 1 and 3. To elucidate the order of crosslinking reactions, P450 mono-oxygenase-inactivation mutants (DeltastaF, DeltastaG, DeltastaH, and DeltastaJ) of the A47934 producer were generated, and the accumulated intermediates were analyzed. Thus, the formation of each crosslink could unambiguously be assigned to a specific oxygenase. The structure of the released intermediates from the wild-type nonribosomal peptide synthetase assembly line facilitated the determination of the cyclization order. Unexpectedly, the additional ring closure in A47934, catalyzed by StaG, is the second oxygenase reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.