Abstract

The unusual amino acid hypusine is produced in a single protein of mammalian cells by a novel posttranslational event in which a lysine residue is conjugated with the four-carbon moiety from the polyamine spermidine to form an intermediate deoxyhypusine, and in which this intermediate is subsequently hydroxylated. Specifically isotopically labeled precursors of hypusine were used to identify the biosynthetic origin of some of the atoms of hypusine and thus to provide further insight into the mechanism of this in vivo chemical modification reaction. Radiolabel from [1,4-3H] putrescine, [1,8-3H]spermidine, and [5-3H]spermidine entered hypusine during growth of Chinese hamster ovary cells. The occurrence of this label at positions 1 and 4, at position 4, and at position 1, respectively, in the 4-amino-2-hydroxybutyl portion of hypusine revealed an alignment of atoms identical to that in the butylamine segment of spermidine. Growth of cells with [epsilon-15N]lysine as the source of lysine yielded hypusine enriched in 15N, whereas only isotope-free hypusine during growth by [4-15N]spermidine. These was found in cells whose spermidine was replaced during growth by [4-15N]spermidine. These findings are in accordance with a proposal that the first phase of hypusine biosynthesis, the production of intermediate deoxyhypusine, occurs through transfer of the butylamine moiety from spermidine to the epsilon-amino nitrogen of protein-bound lysine. The technique of thermospray high-performance liquid chromatography/mass spectrometry provided positive identification of 15N in hypusine through final separation and on-column direct analysis of this amino acid. Methods of preparation are given for spermidine of high specific radioactivity, labeled specifically at position 5 with 3H, and for spermidine with 15N at the 4-position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.