Abstract

Previous studies have indicated that the morphology and behaviour of bovine retinal microvessel endothelial cells are influenced by culture conditions in vitro. Data are presented here concerning the biosynthesis of matrix macromolecules by bovine retinal endothelial cells cultured under conditions in which the cells display either the 'cobblestone' or the 'sprouting' phenotype. Newly synthesized matrix proteins were identified by their characteristic electrophoretic mobilities, immunoprecipitation with specific antibodies, susceptibilities to enzymic digestions and chromatographic behaviour. Type IV procollagen was the major collagenous species synthesized by early-passage cells forming a 'cobblestone' monolayer. In contrast, cells displaying the 'sprouting' morphology switched to the predominant synthesis of interstitial fibrillar collagens (types I and III). Fibronectin was synthesized by retinal endothelial cells under all the experimental conditions studied. A non-collagenous glycoprotein of Mr approx. 47,000 was also a major biosynthetic product of these cells. The synthesis of thrombospondin was very much dependent on the nature of the substratum on which the cells were cultured. This glycoprotein was synthesized in large amounts by 'cobblestone' endothelial cells cultured on gelatin-coated dishes, whereas its synthesis was markedly decreased by culturing the cells on collagen gels, and the protein appeared to be absent when the cells were plated within collagen gels ('sprouting' cells). Late-passage retinal cells synthesized predominantly type I procollagen, variable amounts of type III procollagen and only traces of type IV procollagen, irrespective of whether the cells displayed a 'cobblestone' or 'sprouting' morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.