Abstract

The application of pesticides in agriculture leads to improved crop quality and promotes high productivity. However, the uninterrupted use of these chemicals is directly related to environmental impacts, affecting biodiversity and the health of ecosystems and humans. In this sense, mannosylerythritol lipids (MELs) are a promising alternative, as they are biosurfactants with antimicrobial, amphiphilic characteristics, and low toxicity. Thus, in search of a partial reduction in the use of chemical pesticides in agriculture, this work aimed to evaluate the biostimulant effect of one of the homologs of MELs–MEL-B on the germination of Monica lettuce seeds (Lactuca sativa L.) and the influence on plant growth and root development. The seeds germinated in different concentrations of MEL-B. The incidence of germinated seeds, the germination index, and the average germination time were evaluated. MEL-B at 158 mg/L stimulated seed germination, growth, and seedling development parameters by 65%, while concentrations of 316 and 632 mg/L did not exceed 45% for these parameters. It was observed that MEL-B at 158 mg/L biostimulated the appearance of lateral roots and promoted only 7% of root stress, a difference of 47% for roots grown with MEL-B at 632 mg/L. Furthermore, MEL-B at 158 mg/L was the highest concentration at which there was no phytotoxic effect of MEL-B on seeds. The increase in enzymatic activity corroborates the phytotoxic effect and seed stress at concentrations of 316 and 632 mg/L, showing results of 47% and 54% of stressed roots. In an unprecedented way, this study proved that MEL-B has a biostimulant and phytotoxic effect related to its concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call