Abstract

Abstract Afforestation can impact surface temperature through local and nonlocal biophysical effects. However, the local and nonlocal effects of afforestation in China have rarely been explicitly investigated. In this study, we separate the local and nonlocal effects of idealized afforestation in China based on a checkerboard method and the regional Weather Research and Forecasting (WRF) Model. Two checkerboard pattern–like afforestation simulations (AFF1/4 and AFF3/4) with regularly spaced afforested and unaltered grid cells are performed; afforestation is implemented in one out of every four grid cells in AFF1/4 and in three out of every four grid cells in AFF3/4. The mechanisms for the local and nonlocal effects are examined through the decomposition of the surface energy balance. The results show that the local effects dominate surface temperature responses to afforestation in China, with a cooling effect of approximately −1.00°C for AFF1/4 and AFF3/4. In contrast, the nonlocal effects warm the land surface by 0.14°C for AFF1/4 and 0.41°C for AFF3/4. The local cooling effects mainly result from 1) enhanced sensible and latent heat fluxes and 2) decreases in downward shortwave radiation due to increased low cloud cover fractions. The nonlocal warming effects mainly result from atmospheric feedbacks, including 1) increases in downward shortwave radiation due to decreased low cloud cover fractions and 2) increases in downward longwave radiation due to increased middle and high cloud cover fractions. This study highlights that, despite the unexpected nonlocal warming effect, afforestation in China still has great potential in mitigating climate warming through biophysical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.