Abstract
In this study, nanofibrous scaffolds were prepared from polyurethane and cellulose acetate using electrospinning. Reduced graphene oxide/silver nanocomposites, rGO/Ag, were also used into the mats due to the strong antibacterial activity of rGO/Ag nanocomposites. In order to prevent the agglomeration of silver nanoparticles, AgNPs, the nanoparticles were decorated onto the reduced graphene oxide (rGO) sheets. Initially, Graphene oxide, briefly GO, was synthesized by the improved Hummer method. Then, nanocomposites of reduced graphene oxide were decorated with Ag and were fabricated via a green and facile hydrothermal method. Thereafter, the scaffold containing rGO/Ag nanocomposites, curcumin or both of them were prepared using the electrospinning method. The obtained scaffolds were characterized by scanning electron microscopy (SEM), contact angle, tensile analysis, porosity, and water vapor transmission rate (WVTR). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay, MTT, confirmed the biocompatibility of the composite nanofibers. The scaffolds were able to hinder both of the Gram-negative and Gram-positive bacteria through direct contact with them. In vivo histopathological studies indicated that the scaffold incorporated rGO/Ag nanocomposites and curcumin has the most effect on wound healing and can promote the healing rate of artificial wounds, which indicates the good biomedical potential of nanomaterial in wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.