Abstract

The yoke walk is a popular strongman exercise where athletes carry a heavily loaded frame balanced across the back of their shoulders over a set distance as quickly as possible. The aim of this study was to use ecologically realistic training loads and carry distances to (1) establish the preliminary biomechanical characteristics of the yoke walk; (2) identify any biomechanical differences between male and female athletes performing the yoke walk; and (3) determine spatiotemporal and kinematic differences between stages (intervals) of the yoke walk. Kinematic and spatiotemporal measures of hip and knee joint angle, and mean velocity, stride length, stride rate and stance duration of each 5 m interval were taken whilst 19 strongman athletes performed three sets of a 20 m yoke walk at 85% of their pre-determined 20 m yoke walk one repetition maximum. The yoke walk was characterised by flexion of the hip and slight to neutral flexion of the knee at heel strike, slight to neutral extension of the hip and flexion of the knee at toe-off and moderate hip and knee range of motion (ROM), with high stride rate and stance duration, and short stride length. Between-interval comparisons revealed increased stride length, stride rate and lower limb ROM, and decreased stance duration at greater velocity. Although no main between-sex differences were observed, two-way interactions revealed female athletes exhibited greater knee extension at toe-off and reduced hip ROM during the initial (0–5 m) when compared with the final three intervals (5–20 m), and covered a greater distance before reaching maximal normalised stride length than males. The findings from this study may better inform strongman coaches, athletes and strength and conditioning coaches with the biomechanical knowledge to: provide athletes with recommendation on how to perform the yoke walk based on the technique used by experienced strongman athletes; better prescribe exercises to target training adaptations required for improved yoke walk performance; and better coach the yoke walk as a training tool for non-strongman athletes.

Highlights

  • Strongman is a competitive strength-based sport which caters to both male and female athletes of varying age, body mass and physical ability

  • The lower stride rate and stride length reported for the yoke walk when compared with the farmers walk (Keogh et al, 2014) further highlights the inability of the athlete to continue to increase their stride rate to compensate for the loss of stride length under heavier loading

  • This study provides the first descriptive data of the spatiotemporal and joint kinematic characteristics of male and female strongman athletes performing the yoke walk

Read more

Summary

Introduction

Strongman is a competitive strength-based sport which caters to both male and female athletes of varying age, body mass and physical ability. Strongman exercises are often derived from traditional tests of strength and involve more awkward variations of weightlifting/powerlifting exercises. Such exercises include variations of the squat, deadlift and clean and jerk and heavier versions of common everyday activities such as loaded carries (Harris et al, 2016). While strongman exercises vary across competitions, the most common exercises often require athletes to: lift stones, axles, kegs, sandbags or oversized dumbbells for maximal load or as a set of incremental loads in the shortest time; pull heavy vehicles or flip large vehicle tyres over a distance in the shortest time; or carry loaded frames, kegs or sandbags from one location to another in the shortest time (Keogh and Winwood, 2017). The winner of events like the yoke walk, in a competition setting, is the athlete who requires the shortest time to complete the set distance. For those athletes unable to complete the set distance, the distance the yoke was moved from the original starting position is the performance measure

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.