Abstract

AbstractThere is a need to identify potential biological control agents for use against noctuid pests in greenhouses. The gregarious ectoparasitoid Eulophus pennicornis (Nees) attacks a limited range of macrolepidopterous larvae, including those of some important horticultural pest species. Laboratory trials designed to investigate the biology of E. pennicornis on larvae of the tomato moth, Lacanobia oleracea Linnaeus, reveal that wasps preferentially parasitize penulitmate (fifth) or final (sixth) instar hosts. More than two-thirds of wasps lay viable eggs, and individual females oviposit on up to four hosts during their lifespan. Wasp fecundity is high, preadult development is rapid, and offspring show a markedly female-biased sex ratio. Parasitized fifth instar L.oleracea hosts do not grow as quickly as unparasitized larvae, and neither do they undergo normal ecdysis to the final larval stadium. Furthermore, the consumption of artificial diet by parasitized fifth instar hosts is greatly reduced in comparison to that of unparasitized larvae (overall feeding-reduction over a 12 day period was 64.7%). Our results suggest that E. pennicornis affects both the developmental and feeding physiology of host larvae, and that inoculative releases of this parasitoid could provide effective biological control for L. oleracea and other greenhouse pests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call