Abstract

The nervous system is the major controlling, regulatory, and communicating system in human body. One of the basic functions of the nervous system is the sensory, by which one monitors the external and internal environments. Sensory pathways to the cortex usually consist of three sensory neurons termed 1st order, 2nd order, and 3rd order neurons. In this paper, a standard biological inspired neuron was presented, which can be acted as the basis node of robot perceptual systems. The hardware and software has been designed and implemented for modeling, testing and employing sensor networks composing of many identical neuron nodes. Each node considers ease-of-use and power considerations. Some requirements, such as 'plug-and-play' capability, system integration and dynamic reconfiguration, were described, which is achieved through an 'transducer electronic data sheet' (TEDS) in our networked transducer neuron node. The TEDS contains fields that fully describe the type, operation, and attributes of one or more transducers and its data formats are defined. The paper also specifies a digital interface for connecting neuron to access the TEDS data sheets for reading sensor data and setting actuators. Each neuron can connect more than 8 channel analog signals by 12 bit resolution, two digital channel for SPI and I/sup 2/C interface sensor, and more than 20 channel I/O for switch signal, it can also offer two channel analog output for controlling purpose. A set of designed neurons can be connected together by different structure to form robot nervous system, not only for sensing, but for controlling too. Example application on robot perception system and future in progress work are discussed in the end.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.