Abstract

Sarcopenia, the progressive loss of muscle mass and strength, is one of the major health issues in older adults, given its high prevalence accompanied by huge clinical and socioeconomic implications. Age-related changes in skeletal muscle can be attributed to mechanisms both directly and indirectly related to muscle homeostasis. Indeed, a wide spectrum of age-related modifications in the organism was shown to play a key role in the pathogenesis of sarcopenia. Not surprisingly, sarcopenia has sometimes been indicated as a syndrome stemming from the aging process, and not as univocal standalone disease. Due to the multidimensionality of sarcopenia, a single biomarker approach is not enough to explain the biology of this condition. The aim of this review is to suggest innovative and promising sarcopenia markers investigating the link between skeletal muscle and brain. Indeed, as a neurological origin of sarcopenia has been hypothesized, a new perspective on sarcopenia biomarkers may focus on the dysfunction of the neuromuscular junctions (NMJs). The core SNARE synaptosomal-associated protein of 25 kDa (SNAP25) accumulates in the plasma membrane of nerve terminals at NMJs and regulates exocytosis at peripheral and central synapses. Interestingly, mice studies have shown that SNAP25 affects the neuromuscular function. SNARE complex and, in particular, SNAP25 may represent a promising pathway to explore the molecular and cellular mechanisms regulating muscular homeostasis and concur at profiling the sarcopenia biological background.

Highlights

  • Martina Casati 1*, Andrea Saul Costa 2, Daniele Capitanio 3, Luisa Ponzoni 4, Evelyn Ferri 1, Simone Agostini 2 and Elisa Lori 5 on behalf of the S.A.M.B.A. project

  • The aim of this review is to suggest innovative and promising sarcopenia markers investigating the link between skeletal muscle and brain

  • The physical manifestation of frailty is typically described as dominated by the presence of sarcopenia, one of the most notable changes in body composition being defined by the loss of skeletal muscle mass and strength [2]

Read more

Summary

Frontiers in Medicine

Age-related changes in skeletal muscle can be attributed to mechanisms both directly and indirectly related to muscle homeostasis. A wide spectrum of age-related modifications in the organism was shown to play a key role in the pathogenesis of sarcopenia. The aim of this review is to suggest innovative and promising sarcopenia markers investigating the link between skeletal muscle and brain. As a neurological origin of sarcopenia has been hypothesized, a new perspective on sarcopenia biomarkers may focus on the dysfunction of the neuromuscular junctions (NMJs). The core SNARE synaptosomal-associated protein of 25 kDa (SNAP25) accumulates in the plasma membrane of nerve terminals at NMJs and regulates exocytosis at peripheral and central synapses. SNARE complex and, in particular, SNAP25 may represent a promising pathway to explore the molecular and cellular mechanisms regulating muscular homeostasis and concur at profiling the sarcopenia biological background

AGING AND SARCOPENIA
Promising Markers in Sarcopenia
Established Biomarker of Sarcopenia
Promising Biomarker of Sarcopenia
Findings
CONCLUSIONS AND FUTURE PERSPECTIVES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.