Abstract

BackgroundMicroencapsulated organic acids and botanicals have the potential to develop into important tools for the poultry industry. A blend of organic acids and botanicals (AviPlus®P) has previously shown to reduce Salmonella and Campylobacter in chickens; however, changes to the microbiota of the jejunum and ileum have not been evaluated. Microbiota diversity is linked to, but not correlated with, the efficacy of natural products; therefore, understanding the effects on the microbiota is necessary for evaluating their potential as an antibiotic alternative.ResultsIleal and jejunal segments from control and supplement-fed chickens (300 and 500 g/metric ton [MT]) were subjected to alpha diversity analysis including Shannon’s diversity and Pielou’s Evenness. In both analytics, the diversity in the ileum was significantly decreased compared to the jejunum irrespective of treatment. Similarly, beta diversity metrics including Bray-Curtis dissimilarity index and Weighted Unifrac Distance Matrix, were significant (Q < 0.05) for both tissue and treatments comparisons. Alpha and beta diversity analytics indicated compartmentalization effects between the ileum and jejunum. Additionally, analysis of communities in the microbiota (ANCOM) analysis showed Lactobacilliaceae predominated the total operational taxonomic units (OTU), with a stepwise increase from 53% in the no treatment control (NTC) to 56% in the 300 g/MT and 67% in the 500 g/MT group. Staphylococcaceae were 2% in NTC and 2 and 0% in 300 and 500 g/MT groups. Enterobacteriaceae decreased in the 500 g/MT (31%) and increased in the 300 g/MT (37%) compared to the NTC (35%). Aerococcaceae was 0% for both doses and 7% in NTC. Ruminococcaceae were 0% in NTC and 2 and 1% in the 300 and 500 g/MT. These changes in the microbial consortia were statistically (Q < 0.05) associated with treatment groups in the jejunum that were not observed in the ileum. Least discriminant analysis effect size (LEfSE) indicated different changes directly corresponding to treatment. Enterobacteriaceae demonstrated a stepwise decrease (from NTC onward) while Clostridiaceae, were significantly increased in the 500 g/MT compared to NTC and 300 g/MT (P < 0.05).ConclusionThe bioactive site for the microencapsulated blend of organic acids and botanicals was the jejunum, and dietary inclusion enhanced the GIT microbiota and may be a viable antibiotic alternative for the poultry industry.

Highlights

  • Microencapsulated organic acids and botanicals have the potential to develop into important tools for the poultry industry

  • Sufficient evidentiary support must demonstrate that the microbiota does not render the natural compounds inert nor that the biotransformation results in bactericidal effects that reduce diversity that corresponds with decreased absorption of nutrients and compounds [17,18,19]

  • Group weights were determined at the conclusion of each study, and supplement-fed chicks were slightly heavier (300 g/metric ton (MT) = 0.525 ± 0.007 kg; 500 g/MT = 0.526 ± 0.002 kg) than the no treatment control (NTC) chicks (0.522 ± 0.003 kg); these differences were not significant (P > 0.05)

Read more

Summary

Introduction

Microencapsulated organic acids and botanicals have the potential to develop into important tools for the poultry industry. Microbiota diversity is linked to, but not correlated with, the efficacy of natural products; understanding the effects on the microbiota is necessary for evaluating their potential as an antibiotic alternative. The public concerns associated with the use of antibiotics in poultry production, and animal agriculture in general, necessitates research into acceptable natural alternatives that promote feed efficiency and food animal health while reducing the burden of foodborne disease. Research indicates bioactive natural compounds can decrease the microbial burden on the immune system and promote feed efficiency by improving digestibility and gastrointestinal (GIT) morphology [2,3,4] and intestinal mucosal barrier function [5] in poultry. Sufficient evidentiary support must demonstrate that the microbiota does not render the natural compounds inert nor that the biotransformation results in bactericidal effects that reduce diversity that corresponds with decreased absorption of nutrients and compounds [17,18,19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call