Abstract

Patients with acute promyelocytic leukemia (APL) are characterized by the presence of a t(15;17) chromosomal translocation. The fusion protein PML-RAR alpha encoded from the breakpoint can form a heterodimer and acts as a dominant negative inhibitor against the normal function of PML. Recently we demonstrated that PML is a growth suppressor and transcription suppressor expressed in all cell lines tested. We also found that PML suppresses the clonogenicity and tumorigenicity of APL-derived NB4 cells, as well as the transformation of rat embryo fibroblasts by cooperative oncogenes and NIH/3T3 by neu. Overexpression of PML in human tumor cell lines induces a remarkable reduction in growth rate in vitro and in vivo. More recently, we have shown that PML is a phosphoprotein associated with the nuclear matrix and that its expression is cell cycle related. PML expression is altered during human oncogenesis, implying that PML may be an anti-oncogene involved not only in APL but also in other oncogenic events. Mutation analysis of the functional domains of PML demonstrated that its ability to form PML nuclear bodies or PODs (PML oncogenic domains) is essential for suppressing growth and transformation. In light of the above studies it appears that disruption of the normal function of PML plays a critical role in the pathogenesis of APL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.