Abstract

AbstractNeedle fibre calcite is one of the most ubiquitous habits of calcite in vadose environments (caves deposits, soil pores, etc.). Its origin, either through inorganic, indirect or direct biological processes, has long been debated. In this study, investigations at 11 sites in Europe, Africa and Central America support arguments for its biogenic origin. The wide range of needle morphologies is the result of a gradual evolution of the simplest type, a rod. This rod is the elementary brick which, by aggregation and welding, builds more complex needles. The absence of cross‐welded needles implies that they are welded in a mould, or under a longitudinal and unidirectional constraint, before being released inside the soil pores. The difference between the lengthening of the needles and the c axis can be explained by the existence of needles observed under a scanning electron microscope in organic sleeves, which can act as a mould during rod growth. Complex morphologies with epitaxial outgrowths on straight rods cannot have grown entirely inside organic microtubes; they must result from soil diagenesis after the release of straight rods in a soil‐free medium. Whisker crystals are interpreted as the result of growth and coalescence of euhedral crystals on a rod. Rhomb chains are considered to be the consequence of successive epitaxial growth steps on a needle during variations in growth conditions. Isotopic signatures for needle fibre calcite vary from −16·63‰ to +1·10‰ and from −8·63‰ to −2·25‰ for δ13C and δ18O, respectively. The absence of high δ18O values for needle fibre calcite precludes a purely physicochemical origin (evaporative) for this particular habit of calcite. As epitaxial growth cannot precipitate in the same conditions as initial needles, needle fibre calcite stable isotopic signatures should be used with caution as a proxy for palaeoenvironmental reconstructions. In addition, it is suggested that the term needle fibre calcite should be kept for the original biogenic form. The other habit should be referred to as epitaxial forms of needle fibre calcite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call