Abstract

Curcumin is a polyphenol compound that is a member of the ginger family (Zingiberaceae), which has potential as an antibacterial, antifungal, and polymicrobial antibiofilm on the catheter. Still, its inhibitory activity and eradication of non-catheter polymicrobial antibiotics against S. aureus, P. aeruginosa, E. coli, and C. albicans have never been reported. The discovery of a candidate polymicrobial anti-biofilm drug is indispensable for overcoming infections associated with biofilms. This study aims to determine the inhibitory activity and eradication of curcumin on polymicrobial biofilms. Inhibition testing and eradication activity of polymicrobial biofilms were performed using the microtiter broth method. The effectiveness of curcumin on polymicrobial biofilms was analyzed using minimum biofilm inhibition concentration (MBIC50) and minimum biofilm eradication concentration (MBEC50). The mechanism of action of curcumin against polymicrobial biofilms is tested using scanning electron microscopy (SEM). Curcumin 1 % b/v gives biofilm inhibition activity in the mid-phase and maturation of 62.23 % ± 0.01, 59.43 % ± 0.01, and can eradicate polymicrobial biofilms by 55.79 % ± 0.01 and not much different with nystatin drug control activity. The results also provide evidence that curcumin can damage the extracellular polymeric matrix (EPS) polymicrobial biofilms of S. aureus, P. aeruginosa, E. coli, and C. albicans and damage the morphology of polymicrobial biofilms. Therefore, curcumin can be developed as a candidate for new antibiofilm drugs against polymicrobial biofilms S. aureus, P. aeruginosa, E. coli dan C albicabs.

Highlights

  • Biofilms related to human infections are one of the problems in handling infections

  • We examine the potential of curcumin antibiofilm for inhibition of polymicrobial biofilms: S. aureus, P. aeruginosa, E. coli, dan C. albicans

  • These results indicate that curcumin can inhibit 50 % of polymicrobial biofilm formation in the middle and maturation (Figure 1)

Read more

Summary

Introduction

Biofilms related to human infections are one of the problems in handling infections. Microbial diversity in polymicrobial biofilms results in chronic infections that are difficult to treat compared to monomicrobial biofilms. Biofilm-related infections are an increasing health problem worldwide, especially patients suffering from immune system disorders such as cancer, organ transplants, and malnutrition. There are not many antibiotics available that can effectively fight biofilm infections, which causes very high drug resistance. Bacterial and fungal infections caused by biofilms are complicated to treat, to kill both bacteria and fungi in the form of biofilms requires 1 000 times the dose of antimicrobials needed to achieve the same results as planktonic cells [1, 2]. Conditions related to polymicrobial biofilms are called complex and complicated because of the presence of several infectious agents.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call