Abstract

Biodegradable microplastics (MPs) can form biofilms through interactions with various microorganisms in aquatic system and can be exposed to organisms. This study first investigated biodegradability of polylactic acid (PLA) MPs and the characterization of PLA MPs before/after biofouling (4 weeks) and their toxic effects on the freshwater invertebrate Daphnia magna. The biodegradability rate of PLA MPs was up to 50% over 28 days, suggesting that even biodegradable MPs do not easily decompose under environmental conditions. Furthermore, biofouling of MPs led to an increase in size and, in the process, induced an additional functional peak in the PLA MPs. The exposure of biofouled MPs did not lead to a reduction in survival, reproduction, or growth during chronic exposure, nor did it cause feeding inhibition in juvenile (<4 days old) D. magna. However, pristine MPs significantly reduced survival, reproduction, and growth at concentrations of 5.0 mg L−1. Overall, pristine MPs caused inhibition of reproduction and growth and high mortality in D. magna, while the biofouling process did not induce these effects. Our findings highlight the complex interactions between MPs and biological components in aquatic environments, emphasizing the importance of considering biofouling dynamics when assessing the ecological impacts of biodegradable MPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.