Abstract

In this study, the effects of Rhodopseudomonas capsulata present in wastewater effluent on the biodegradation of carbaryl in soil and improvement of soil fertility were investigated. Compared to control treatment, carbaryl was removed efficiently and soil fertility was remediated with the addition of effluent containing R. capsulata. Molecular analysis revealed that carbaryl induced carbaryl hydrolase gene expression to synthesize carbaryl hydrolase through activating MAPKKKs, MAPKKs, MAPKs genes in MAPK signal transduction pathway. The induction and secretion of carbaryl hydrolase occur after one day in R. capsulata, which can be attributed to its characteristics as an ancient bacteria, which require acclimatization to carbaryl before gene induction. However, lack of organics in soil and control treatment could not maintain R. capsulata growth for over one day. The residual organics in the effluent provided sufficient carbon source and energy for R. capsulata under four effluent treatments. This new method resulted in the remediation of carbaryl pollution and improvement of soil fertility and soybean processing wastewater treatment simultaneously, as well as the reutilization of wastewater and R. capsulata as sludge. Meanwhile, the high-order non-linear mathematical model about carbaryl removal rate was established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.