Abstract
This study was undertaken to understand the biodegradation mechanisms of calcium phosphate (Ca-P) biomaterials with different crystallization. Two types of sintered Ca-P porous ceramic (HA and beta-TCP) and a Ca-P bone cement (CPC) were implanted into cavities drilled in rabbit femoral and tibiae condyles. The results have shown that a material biodegradation was rapid in the beta-TCP and the CPC, but very weak in the HA. This biodegradation presented a decrease of material volume from the periphery to the center as well as a particle formation causing phagocytosis by numerous macrophages and multinucleated giant cells in the CPC. In the beta-TCP, there was a peripheral and central decrease of material volume as well as an absence of particle formation or visible phagocytosis. The process of biodegradation is considered to be directly influenced by the type of material crystallization. The sintered bioceramics processed at a high temperature exhibit good crystallization and are primarily degraded by a process dependent on interstitial liquids. However, the bone cement is formed by physicochemical crystallization and is degraded through a dissolution process associated with a cellular process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.