Abstract
Summary The most effective method of managing root-knot nematodes is employing resistant and tolerant cultivars. Investigating biochemical changes can help determine the cause of resistance or susceptibility of plants to nematodes. In this study, resistance levels of some tomato cultivars, ‘ALYSTE F-1’, ‘ARYZA F-1’, ‘Early Urbana’, ‘Rutgers’, ‘Dutch Mobil’ and ‘Hungarian Mobil’, were evaluated based on nematode reproduction indices under glasshouse conditions. After selecting the most susceptible and resistant cultivar, comparisons of activity of defence enzymes (guaiacol peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, polyphenol oxidase and phenylalanine ammonia-lyase), and phenolic and lignin contents in leaves and roots were investigated. Analysis of nematode reproductive traits revealed that ‘ALYSTE F-1’ had the lowest number of galls per root system, egg masses per root system, eggs per root system, and second-stage juveniles per 1.5 kg of soil and, consequently, the lowest number of nematode populations. Finally, ‘ALYSTE F-1’ and ‘Dutch Mobil’ (based on reproduction factor, gall index and resistance index) were selected as moderately resistant and highly susceptible cultivars, respectively, for biochemical analysis. Biochemical analysis of leaves and roots showed that most of the defence compounds in ‘ALYSTE F-1’ were higher than ‘Dutch Mobil’. These results also showed that ‘ALYSTE F-1’ reacted to nematode attack more rapidly than ‘Dutch Mobil’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.