Abstract

Bioaerosols generated from sludge treatment processes in wastewater treatment plants (WWTPs) may spread infectious diseases. This study investigated the generation characteristics, source, and associated risks of bioaerosols produced during sludge treatment processes. The results showed that the concentration range of total suspended particles was 49 ± 3 to 354 ± 10 μg/m3, and the primary water-soluble ions in bioaerosols were NH4+, SO42− and Cl−. The bacterial concentration in bioaerosols was 50 ± 5 to 1296 ± 261 CFU/m3, with the highest concentration in the biochemical reaction tank. The dominant bacteria in bioaerosols included Bacteroides, Cetobacterium, Romboutsia, Lactobacillus and Turicibacter, while the dominant fungi were Aspergillus, Alternaria, Cladosporium and Fusarium. Pathogenic microorganisms such as Escherichia and Aspergillus were detected in all treatment processes. The results of principal component analysis showed that the bacterial composition in bioaerosols was similar of different technological processes, while the fungal species composition was different. The dominant microbial composition of sludge and bioaerosols was relatively close. The Source Tracker results indicated that sludge was the main source of airborne bacteria in the sludge dewatering house, as well as the main source of airborne fungi in the plate-frame pressure filtration tank and the sloping plate sedimentation tank. The non-carcinogenic risk in each stage was low (1.22 × 10−9–3.99 × 10−2). However, Bugbase phenotype prediction results showed that the bioaerosols in the anaerobic sedimentation tank may have potential pathogenicity. Therefore, the management and control of bioaerosols from the sludge treatment should be strengthened.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call