Abstract

Ultra-small nanoparticles of a size smaller than or comparable to cell membrane pores (1–5 nm) offer significant potential in the field of biomedicine. This study presents a systematic in vitro investigation of fundamental bio-chemical interactions of such ultra-small hydrogenated and oxidized detonation nanodiamonds (DNDs) with biomolecules and human cells. We apply mass spectrometry methods (LC-MS/MS) for the qualitative and quantitative analysis of the protein corona as a function of the surface chemistry and size of DNDs. We observe that protein interactions with DNDs are more related to their surface chemistry (H/O-termination) rather than size. Bioinformatics characterization of the identified proteins points to the strong influence of electrostatic interaction between proteins and DNDs depending on their termination. Such specific interaction leads to formation of different protein corona on 2 nm DNDs, which influences also interaction with cells including different level of cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.