Abstract

Stereoacuity thresholds measured on disparity pedestals are generally found to increase exponentially as the pedestals move away from horopters. However, Farell, Li, and McKee recently found that for sinusoidal stimuli this threshold function had a dip—a pedestal effect. This paper examines the underlying neural mechanism. We suggest a general disparity coding scheme with two position parameters, which are necessary to account for the phenomenon that the response of the energy model depends on the absolute phase of the stimulus. This scheme was implemented to simulate the responses, calculated from an energy model, of the neurons of a full V1 cortical column. To explain the stereo pedestal effect, we propose a decoding mechanism, which is first processed along the phase dimension and then along the orientation dimension. The final step of the decoding mechanism, probability summation over the outputs of spatial frequency channels, yields the dip, producing a disparity increment threshold function similar to the psychophysical result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.