Abstract
To investigate the function of transcription factor Sp1 in beta-like globin gene activation, we analyzed the recruitment of Sp1, fetal Krüppel-like factor 2 (FKLF2), and related factors at the human beta-globin locus in a human fetal liver and mouse erythroleukemia hybrid cell (A181gamma cell) that contains a single copy of human chromosome 11. Sp1 binds at the GT boxes of the cis-elements throughout the beta-locus, but it is phosphorylated and lost over DNase I hypersensitive site (HS)2, HS3, HS4, and the human beta-globin gene promoter after A181gamma cell differentiation. The binding of FKLF2 at HS2 and HS3 was unchanged. Histone deacetylase 1, which could be recruited by Sp1, is also lost over HS2 and HS3 after differentiation, resulting in the acetylation of histones 3 and 4 across the human beta-globin locus. We previously detected in vivo GT footprints over the beta-globin locus after A181gamma differentiation. Here, we report that after differentiation, the p300/CREB-binding protein-associated factor is recruited by FKLF2 to the locus control region to acetylate histones 3 and 4 at the human beta-globin gene locus. Our results suggest that Sp1 is an inhibitor of beta-like globin gene transcription during erythroid terminal differentiation. Its phosphorylation and release allow the erythroid-specific FKLF2 or erythroid Krüppel-like factor to interact with other erythroid-specific transcription factors to initiate the transcription of beta-like globin genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.