Abstract

Density functional theory calculations have been used to probe the end-on and side-on bonding motifs of nitric oxide at the Cu(i) centre in the enzyme copper nitrite reductase and in three inorganic model systems. We find that irrespective of a range of functionals used, the end-on structure is preferred by up to 40 kJ mol(-1), although this preference is smaller for the enzyme than for the inorganic model systems. We have calculated the g-tensor and atomic hyperfine coupling constants for these structures. When compared to available experimental data, for one model compound the calculated EPR parameters definitely favour an end-on structure, although this preference is somewhat less for the enzyme. Our prediction of NO end-on binding in the enzyme is at variance with structural data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.