Abstract

Abstract Human thrombin binds to specific receptors on the surface of human platelets in a manner analogous to bovine thrombin. Thus, two classes of binding are observed--high affinity with a dissociation constant (Kdiss) of 0.02 U/ml and low affinity with a Kdiss of 5 U/ml. Bovine and human thrombin bind to the same platelet receptors, although bovine thrombin binds with slightly greater affinity. When the amount of thrombin bound to platelets is related to the extent of 14C-serotonin release, bovine and human thrombin are equally effective. Antibodies to human and bovine thrombin were found to differ markedly in their ability to precipitate thrombin of the two species. Thus, antibovine thrombin precipitated eightfold more bovine thrombin than human thrombin, while antihuman thrombin precipitated tenfold more human thrombin than bovine thrombin. Similar differences were found in the ability of Fab fragments of these antibodies to block the interaction of thrombin of each species with human platelets. The finding that both species of thrombin, despite significant evolutionary differences in primary structure, retain essentially identical binding sites to platelets suggests that this part of the thrombin molecule is physiologically important and supports our hypothesis of a role for thrombin binding to platelets in platelet function and hemostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.