Abstract

When chlortetracycline is added to a suspension of respiring Staphylococcus aureus cells, the active transport of the antibiotic may be monitored by its fluorescence enhancement as it moves from a polar aqueous environment into the apolar regions of the membrane. The initial rates of transport are temperature dependent with a maximal rate between 35 and 45 °C. Arrhenius plots of the initial rates are biphasic with a transition temperature of 27 °C for control cells. This transition temperature is sensitive to the fatty acid composition of the S. aureus cells. By culturing the cells in the presence of oleic acid or at 10 °C, the S. aureus cells incorporate a larger percentage of unsaturated and branched chain fatty acids into their membranes, resulting in transition temperatures 8–9 °C lower than the control cells. Studies of depolarization of fluorescence also indicate that the mobility of the bound chlortetracycline is temperature-dependent. Temperature transitions occur at the same temperatures as those measured by Arrhenius plots. The transition temperatures indicated by the Arrhenius plots and the polarization studies are believed to reflect order-disorder phase transitions associated with the melting of the phospholipids in the cell envelope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.