Abstract
The study was designed to identify 'atypical' bile acids in gastric contents from three neonates with high intestinal obstruction on the basis that this was likely to represent a rich source of primary bile acids. Cholic acid was the major component, and related 'atypical' bile acids included its C-3 and C-7 oxidation products, its 3 beta-epimer and 2 beta- and 6 alpha-hydroxylation products. Allocholic acid was the only 5 alpha-cholanic acid derivative identified. 7 alpha, 12 alpha-Dihydroxy-3-oxochol-4-en-24-oic acid was found in all three specimens and might be an intermediate in a biosynthetic pathway from cholesterol to cholic acid in which side-chain oxidation precedes at least some of the nuclear changes. Side-chain-hydroxylated derivatives of trihydroxycoprostanic acid were also detected and these may represent intermediates in biosynthetic pathways from cholesterol to cholic acid via 5 beta-cholestan-3 alpha, 7 alpha, 12 alpha-triol. The most abundant bile acid of this type was (25 epsilon)-3 alpha, 7 alpha, 12 alpha, 25-tetrahydroxy-5 beta-cholestan-26-oic acid, which suggested that C-25 hydroxylation may be an important step in the shortening of the C8 side chain of the cholestane triol to the C5 side chain of cholic acid in the neonatal period. Bile acids lacking a substituent at C-12 included chenodeoxycholic acid, its C-3 and C-7 oxidation products, its 3 beta-epimer and its 6 alpha-hydroxylation product (hyocholic acid).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.