Abstract

This article looks at a controversy over the ‘better’ architecture for conversational AI that unfolds initially along the question of the ‘right’ size of models. Current generative models such as ChatGPT and DALL-E follow the imperative of the largest possible, ever more highly scalable, training dataset. I therefore first describe the technical structure of large language models and then address the problems of these models which are known for reproducing societal biases or so-called hallucinations. As an ‘alternative’, computer scientists and AI experts call for the development of much smaller language models linked to external databases, that should minimize the issues mentioned above. As this paper will show, the presentation of this structure as ‘alternative’ adheres to a simplistic juxtaposition of different architectures that follows the imperative of a computable reality, thereby causing problems analogous to the ones it tried to circumvent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.