Abstract

The Thomas precession of relativity physics gives rise to important isometries in hyperbolic geometry that expose analogies with Euclidean geometry. These, in turn, suggest our bifurcation approach to hyperbolic geometry, according to which Euclidean geometry bifurcates into two mutually dual branches of hyperbolic geometry in its transition to non-Euclidean geometry. One of the two resulting branches turns out to be the standard hyperbolic geometry of Bolyai and Lobachevsky. The corresponding bifurcation of Newtonian mechanics in the transition to Einsteinian mechanics indicates that there are two, mutually dual, kinds of uniform accelerations. Furthermore, while current hyperbolic geometry “does not use the notion of vector at all” (I. M. Yaglom, Geometric Transformations III, p. 135, trans. by Abe Shenitzer, Random House, New York, 1973), our bifurcation approach exposes the elusive hyperbolic vectors, that we call gyrovectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.