Abstract
In this paper, the Kudryashov–Sinelshchikov equation is studied by using the bifurcation method of dynamical systems and the method of phase portraits analysis. From dynamic point of view, the existence of peakon, solitary wave, smooth and non-smooth periodic waves is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given. Also, some new exact travelling wave solutions are presented through some special phase orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.