Abstract

BackgroundRecent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In addition, autophagy control is emerging to prevent cancer cell survival. Autophagy breaks down the unnecessary cytoplasmic components into anabolic units and energy sources, which are the most important sources for making the ATP that maintains homeostasis in cancer cell growth and survival. Therefore, the glucose analog 2-deoxyglucose (2DG) has been used as an anticancer reagent due to its inhibition of glycolysis.MethodsProstate cancer cells (PC3) were treated with 2DG for 6 h or 48 h to analyze the changing of cell cycle and autophagic flux. Rapamycin and LC3B overexpressing vectors were administered to PC3 cells for autophagy induction and chloroquine and shBeclin1 plasmid were used to inhibit autophagy in PC3 cells to analyze PC3 cells growth and survival. The samples for western blotting were prepared in each culture condition to confirm the expression level of autophagy related and regulating proteins.ResultsWe demonstrated that 2DG inhibits PC3 cells growth and had discriminating effects on autophagy regulation based on the different time period of 2DG treatment to control cell survival. Short-term treatment of 2DG induced autophagic flux, which increased microtubule associated protein 1 light chain 3B (LC3B) conversion rates and reduced p62 levels. However, 2DG induced autophagic flux is remarkably reduced over an extended time period of 2DG treatment for 48 h despite autophagy inducing internal signaling being maintained. The relationship between cell growth and autophagy was proved. Increased autophagic flux by rapamycin or LC3B overexpression powerfully reduced cell growth, while autophagy inhibition with shBeclin1 plasmid or chloroquine had no significant effect on regulating cell growth.ConclusionGiven these results, maintaining increased autophagic flux was more effective at inhibiting cancer cell progression than inhibition of autophagic flux, which is necessary for the survival of PC3 cells. Autophagic flux should be tightly regulated to maintain metabolic homeostasis for cancer cell growth and survival in PC3 cells and is a suitable target for cancer therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1640-z) contains supplementary material, which is available to authorized users.

Highlights

  • Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression

  • Data are represented as means ± SD. ***P < 0.001, control versus 5 mM 2DG; ***P < 0.001, control versus 10 mM 2DG; ***P < 0.001, control versus 20 mM 2DG. (b) After 2DG treatment for 48 h, autophagy levels were detected using western blotting analysis. p62 was used as an autophagy substrate and light chain 3B (LC3B) showed autophagy levels. (c) The level of autophagy was confirmed with confocal microscopy

  • Autophagic flux regulates cell growth and survival We investigated whether autophagy regulates the cell cycle or survival of PC3 cells

Read more

Summary

Introduction

Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In cancer, functioning autophagy is crucial to survival and growth because rapidly proliferating cancer cells need vast energy and biomass to make new proteins, lipids, and intracellular components, and must remove protein aggregates, abnormal cytoplasmic compartments, excess reactive oxygen species, and lipid droplets to maintain the homeostasis that is produced during the development of cancer [15, 16]. These helpful functions of autophagy produce pro-survival effects in cancer development and increase resistance to chemotherapy [17, 18]. The double-edged sword effects of autophagy on cell survival or death are controversial [27, 28]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call