Abstract

Bidimensionality provides a tool for developing subexponential fixed-parameter algorithms for combinatorial optimization problems on graph families that exclude a minor. This paper extends the theory of bidimensionality for graphs of bounded genus (which is a minor-excluding family). Specifically we show that, for any problem whose solution value does not increase under contractions and whose solution value is large on a grid graph augmented by a bounded number of handles, the treewidth of any bounded-genus graph is at most a constant factor larger than the square root of the problem's solution value on that graph. Such bidimensional problems include vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating set, r-dominating set, connected dominating set, planar set cover, and diameter. On the algorithmic side, by showing that an augmented grid is the prototype bounded-genus graph, we generalize and simplify many existing algorithms for such problems in graph classes excluding a minor. On the combinatorial side, our result is a step toward a theory of graph contractions analogous to the seminal theory of graph minors by Robertson and Seymour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.