Abstract

Multiple factors must be considered in power-amplifier design for wireless communications and radar, including bias voltage, input power, and load impedance. The Bias Smith Tube is presented as a three-dimensional extension of the Smith Chart with bias voltage as the vertical axis. It allows simultaneous visualization of nonlinear output characteristic behaviors over transistor bias voltage and load reflection coefficient. Simulated and measured three-dimensional surfaces of constant power-added efficiency (PAE), adjacent channel power ratio (ACPR), and delivered power are shown in the Bias Smith Tube, and a design approach is illustrated that finds the combination of load impedance and bias voltage providing maximum PAE under ACPR and/or delivered power constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.