Abstract

Persistent homology is the workhorse of modern topological data analysis, which in recent years becomes increasingly powerful due to methodological and computing power advances. In this paper, after equipping the reader with the relevant background on persistent homology, we show how this tool can be harnessed for investment purposes. Specifically, we propose a persistent homology based turbulence index for the detection of adverse market regimes. With the help of an out-of-sample study, we demonstrate that investment strategies relying on a persistent homology based turbulence detection outperform investment strategies based on other popular turbulence indices. Additionally, we conduct a stability analysis of our findings. This analysis confirms the results from the previous out-of-sample study, as the outperformance prevails for most configurations of the respective investment strategy and hence mitigating possible data mining concerns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.