Abstract

Although the molecular characteristics of glial Na+ channels are not well understood, recent studies have shown the presence of mRNA for rat brain Na+ channel alpha subunits in astrocytes and Schwann cells. In this study, we asked whether the mRNA for the rat brain Na+ channel beta 1 subunit is expressed in glial cells. We performed in situ hybridization using a complementary RNA probe for the coding regions of the rat brain Na+ channel beta 1 subunit mRNA and detected beta 1 subunit mRNA in cultured rat optic nerve astrocytes and sciatic nerve Schwann cells. The beta 1 subunit was amplified by reverse transcription-polymerase chain reaction in rat optic and sciatic nerves, which lack neuronal somata but contain astrocytes and Schwann cells, respectively. Doublet bands of the beta 1 subunit mRNA were amplified from both optic and sciatic nerves. Through the cloning and sequencing of these bands, we confirmed the amplification of a mRNA highly homologous to the previously cloned rat brain Na+ channel beta 1 subunit (beta 1.1) and a novel form of the beta 1 subunit mRNA (beta 1.2), which is closely homologous to beta 1.1 but contains an additional 86-nucleotide insert in 3' noncoding regions. Two beta 1 subunit mRNAs were also amplified from rat brain and skeletal muscle, but not from rat liver or kidney. These results indicate that rat brain Na+ channel beta 1 subunit mRNAs are expressed in glial cells as well as in neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.