Abstract

Co-operatively breeding mammals often exhibit a female reproductive skew and suppression of the subordinate non-breeding group members. According to evolutionary theory and the immunity-fertility axis, an inverse relationship between reproductive investment and survival (through immunocompetence) is expected. As such, this study investigated if a trade-off between immunocompetence and reproduction arises in two co-operatively breeding African mole-rat species, namely the Damaraland mole-rat (Fukomys damarensis) and common mole-rat (Cryptomys hottentotus hottentotus), which possess female reproductive division of labour. This study also attempted to investigate the relationship between the immune and endocrine systems in Damaraland mole-rats. There was no trade-off between reproduction and immunocompetence in co-operatively breeding African mole-rat species, and in the case of the Damaraland mole-rats, breeding females (BFs) possessed increased immunocompetence compared with non-breeding females (NBFs). Furthermore, the increased levels of progesterone possessed by Damaraland mole-rat BFs compared with NBFs appear to be correlated to increased immunocompetence. In comparison, BF and NBF common mole-rats possess similar immunocompetence. The species-specific differences in the immunity-fertility axis may be due to variations in the strengths of reproductive suppression in each species. This article is part of the theme issue 'Evolutionary ecology of inequality'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.