Abstract

AbstractApomixis, the asexual formation of embryos and seeds, occurs in approximately 18% of angiosperm families. Melastomataceae exhibits a remarkable number of apomictic species, distributed among different tribes. This mode of reproduction has been elucidated in Miconieae, but remains unclarified for other groups, such as Microlicieae. Although apomixis has been previously described for Microlicieae species, the cytological basis for this phenomenon is entirely unknown in this group. Thus, populations of Microlicia fasciculata and M. polystemma were used in order to (a) investigate the presence of autonomous apomixis; (b) verify if this mode of reproduction leads to polyembryony; and (c) investigate whether apomixis may occur in parallel with the sexual process. We tested these species for autonomous fruit set and polyembryony, and pollen viability, and analyzed pollen tube growth. Anatomical techniques were used to elucidate the micro‐ and megasporogenesis and gametogenesis. The species showed autonomous fruit and seed formation and exhibited polyembryony. Apospory and adventitious embryony were the developmental mechanisms of apomixis in M. fasciculata and M. polystemma, respectively. Both species exhibited low pollen viability. However, some viable pollen, reduced embryo sac formation, natural pollination and pollen tube growth enable sexual reproduction and characterize these species as facultative apomicts. The independence of pollinators for fruit set, uniparental reproduction and the possibility of sexual reproduction, confer reproductive assurance and flexibility, bringing together advantages of sexual and asexual reproduction. In this sense, apomixis may have played an important role in the evolution and diversification of Microlicia, a widely distributed genus in the Brazilian Cerrado.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.