Abstract

The possibility of performing computations with cellular automata (CAs) opens up new conceptual issues in emergent computation. Driven by this motivation, a recurring problem in this context is the automatic search for good one-dimensional, binary CA rules that can perform well in the density classification task (DCT), that is, the ability to discover which cell state outnumbers the other state. In the past, the most successful attempts to reach this target have relied on evolutionary searches in the space of possible rules. Along this line, a multiobjective, heuristic evolutionary approach, implemented as a distributed cooperative system, is presented here, which yielded outstanding results, including a rule that led to the characterisation of a class of four equivalent rules, all of them with the best performance currently available in the literature for the DCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.