Abstract

The physics of two-dimensional (2D) quantum gases can be revealed in strongly confining optical lattices. Upon cooling, 2D bosonic quantum gases as well as Fermi gases where pairing is present, become superfluid. The superfluid-to-normal transition is no longer governed by the presence or absence of a condensate, but by the Berezinskii–Kosterlitz–Thouless (BKT) mechanism: above a critical temperature, vortices and antivortices proliferate and destroy phase coherence. We investigate the BKT transition for superfluid 2D Fermi gases in the whole range of the BCS–BEC crossover, from weakly bound Cooper pairing (the BCS state), up to strongly bound molecules (the BEC state). Using a path-integral description, we then focus on the case of imbalanced gases: when the number of ‘spin-up’ and ‘spin-down’ fermions that form the pair is no longer equal. When an excess of one spin species exists, pairing is frustrated and the vortex energetics is strongly affected, influencing the KT mechanism. In the present work we are concentrated on the effect of both phase and amplitude fluctuations on phase diagrams of the fermion system. The amplitude fluctuations only slightly influence the BKT phase transition temperature. However, they lead to a substantial modification of the complete phase diagram for the Fermi gas in 2D with respect to that obtained taking into account only phase fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.