Abstract

We prove the Berenstein–Zelevinsky conjecture that the quantized coordinate rings of the double Bruhat cells of all finite-dimensional connected, simply connected simple algebraic groups admit quantum cluster algebra structures with initial seeds as specified by [5]. We furthermore prove that the corresponding upper quantum cluster algebras coincide with the constructed quantum cluster algebras and exhibit a large number of explicit quantum seeds. Along the way a detailed study of the properties of quantum double Bruhat cells from the viewpoint of noncommutative UFDs is carried out and a quantum analog of the Fomin–Zelevinsky twist map is constructed and investigated for all double Bruhat cells. The results are valid over base fields of arbitrary characteristic and the deformation parameter is only assumed to be a non-root-of-unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.