Abstract

Current treatments for patients infected with HIV are suboptimal. There is a need for new HIV therapies that act through different mechanisms than current treatments. We investigated the in vitro efficacy, safety and mechanism of action of the benzamide derivative N-[1-(7-tert-Butyl-1H-indol-3-ylmethyl)-2-(4-cyclopropanecarbonyl-3-methyl-piperazin-1-yl)-2-oxo-ethyl]-4-nitro-benzamide (SP-10), a potential new HIV treatment. When HIV-1-responsive engineered HeLa cells were pre-incubated for 48 h with either SP-10 or zidovudine (AZT), SP-10 was able to inhibit viral replication at much lower concentrations (IC50 = 0.036 nM) than AZT (IC50 = 27.4 nM). In contrast to AZT, SP-10 also inhibited replication of the multidrug-resistant HIV-1 strain MDR-769 in the HeLa cell model. In co-incubation experiments, SP-10 also inhibited the CCR5-sensitive HIV-1 BaL virus replication in human peripheral blood mononuclear cells. SP-10 displayed very low toxicity compared with current antiviral treatments. Confocal laser scanning microscopy and immunoprecipitation studies showed that SP-10 reduced the expression of CD4 and CCR5 on the surface of the host cell. SP-10 also reduced the level of gp120 binding to the cell surface. Confocal laser scanning microscopy studies showed that SP-10 blocked the formation of actin filaments (F-actin) and altered actin accumulation near the cell surface. These promising results suggest that SP-10 has a novel mechanism of action that enables effective inhibition of HIV-1 binding and cell entry. Further development of SP-10 as a new HIV treatment appears warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call