Abstract

The two-dimensional nonlinear problem of steady gravity waves on water of finite depth is considered. The Benjamin–Lighthill conjecture is proved for these waves provided Bernoulli’s constant attains near-critical values. In fact this is a consequence of the following more general results. If Bernoulli’s constant is near-critical, then all corresponding waves have sufficiently small heights and slopes. Moreover, for every near-critical value of Bernoulli’s constant, there exist only the following waves: a solitary wave and the family of Stokes waves having their crests strictly below the crest of this solitary wave; this family is parametrised by wave heights which increase from zero to the height of the solitary wave. All these waves are unique up to horizontal translations. Most of these results were proved in our previous paper (Kozlov and Kuznetsov in Arch Rational Mech Anal 197, 433–488, 2010), in which it was supposed that wave slopes are bounded a priori. Here we show that the latter condition is superfluous by proving the following theorem. If any steady wave has the free-surface profile of a sufficiently small height, then the slope of this wave is also small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call