Abstract

Physical exposure assessment is a critical component of ergonomic analysis in occupational settings. This work used a computational model to obtain quantitative measures of shoulder moment, glenohumeral joint contact force and rotator cuff muscle demand based on recorded postures and manual force estimates during the performance of ten different occupational tasks. Outcomes of simulation analyses demonstrated that advanced model outputs can enhance resolution of shoulder-specific exposures currently unavailable with standard ergonomics assessment techniques. A novel composite injury risk score effectively discriminated between shoulder exposure levels. It includes multiple complementary parameters into a single exposure risk assessment tool. The major contribution of the work is to establish the feasibility and utility of incorporating a computational model into ergonomic assessments across occupational tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call