Abstract
The fitting of predictive survival models usually involves determination of model complexity parameters. Up to now, there was no general applicable model selection criterion for semi- or non-parametric approaches. The integrated prediction error curve, an estimator of the integrated Brier score, has the ability to close this gap and allows a reasonable, data-based choice of complexity parameters for any kind of model where risk predictions can be obtained. Random survival forests are used as example throughout the article. Here, a critical complexity parameter might be the number of candidate variables at each node. Model selection by our integrated prediction error curve criterion is compared to a frequently used rule of thumb, investigating the potential benefit regarding prediction performance. For that, simulated microarray survival data as well as two real data sets of patients with diffuse large-B-cell lymphoma and of patients with neuroblastoma are used. It is shown, that the optimal parameter value depends on the amount of information in the data and that a data-based selection can therefore be beneficial in several settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.