Abstract
Aposematic passion-vine butterflies from the genus Heliconius form communal roosts on a nightly basis. This behaviour has been hypothesized to be beneficial in terms of information sharing and/or anti-predator defence. To better understand the adaptive value of communal roosting, we tested these two hypotheses in field studies. The information-sharing hypothesis was addressed by examining following behaviour of butterflies departing from natural roosts. We found no evidence of roost mates following one another to resources, thus providing no support for this hypothesis. The anti-predator defence hypothesis was tested using avian-indiscriminable Heliconius erato models placed singly and in aggregations at field sites. A significantly higher number of predation attempts were observed on solitary models versus aggregations of models. This relationship between aggregation size and attack rate suggests that communally roosting butterflies enjoy the benefits of both overall decreased attack frequency as well as a prey dilution effect. Communal roosts probably deter predators through collective aposematism in which aggregations of conspicuous, unpalatable prey communicate a more effective repel signal to predators. On the basis of our results, we propose that predation by birds is a key selective pressure maintaining Heliconius communal roosting behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.