Abstract

Drought stress severely limits crop growth and yield. With the atmospheric CO2 constantly increasing, plants will be affected by multiple effects of drought and increased CO2 in the future. Abscisic acid (ABA) plays vital roles in plant stress tolerance, especially drought stress. However, little is known about the effects of elevated CO2 concentration (e[CO2]) and exogenous ABA in cucumber (Cucumis sativus L.) response to drought stress. In the present study, we investigated the effects of e[CO2] and exogenous ABA on the drought tolerance of cucumber seedlings under the simulated drought stress induced by 5% polyethylene glycol 6000. The experiment was a split-plot design, in which the main factor was CO2 concentrations; atmospheric and elevated CO2 concentrations (~400 and 800 ± 40 μmol mol−1, respectively). The subplot factor was the combinations of exogenous ABA and its synthesis inhibitor sodium tungstate (Na2WO4); deionized water (control), 20 μM ABA, 2 mM Na2WO4, and 2 mM Na2WO4 + 20 μM ABA, which were applied to plant leaves. The results showed that compared with exogenous ABA application only, e[CO2] combined with exogenous ABA significantly increased the biomass, chlorophyll content, and net photosynthetic rate (Pn) of cucumber seedlings under drought stress. Meanwhile, e[CO2] and exogenous ABA were more efficient in reducing the contents of reactive oxygen species and malondialdehyde, promoting the accumulation of proline, soluble sugar, soluble protein, free amino acid, ascorbic acid, and glutathione. The ratios of ascorbic acid/dehydroascorbic acid (ASA/DHA), glutathione/oxidized glutathione (GSH/GSSG), as well as the activities of antioxidant enzymes were increased. In conclusion, e[CO2] and exogenous ABA synergistically alleviated oxidative damage of drought stress on cucumber seedlings by increasing antioxidant enzyme activities and accelerating the ASA–GSH cycle in cucumber seedlings, which in turn improved the drought tolerance of cucumber seedlings, and provided theoretical and practical support for further studies on the alleviation of drought stress in protected horticulture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call