Abstract

Production of reactive oxygen species (ROS) induced by exercise training yields serious oxidative damage to cellular structures. Antioxidant supplements are widely used to reduce the deleterious effects of such endogenous ROS. This study aimed to investigate the effect of two types of intensive exercise training along with α-tocopherol succinate supplementation on serum levels of 8-oxoguanine DNA glycosylase (OGG1), 8-hydroxy-2′-deoxyguanosine (8-OHdG), creatine kinase (CK), and lactate dehydrogenase (LDH). Forty-two male albino Wistar rats were randomly assigned into sedentary control (SC), sedentary vehicle (SV), sedentary supplementation (SS), continuous exercise (CE), continuous exercise + supplementation (CES), intermittent exercise (IE), and intermittent exercise + supplementation (IES), with six rats in each group. Intensive continuous and intermittent running on treadmill, combined with α-tocopherol succinate supplementation (60 mg/kg/day) was carried out for 6 weeks. Data were analyzed using one-way analysis of variance at P < 0.05 level. α-Tocopherol succinate supplementation increased serum total antioxidant capacity (TAC) in SS, CES and IES groups. CK, LDH, and OGG1 levels increased significantly in CE and IE groups; however, α-tocopherol succinate supplementation reduced these factors dramatically in CES and IES groups. In addition, 8-OHdG level was remarkably lower in CES and IES groups. Taken together, α-tocopherol succinate supplementation can modify oxidative damage to genomic structures induced by intensive exercise training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call