Abstract

In this paper, the bending singularity at the apex of V-notch in an anisotropic thick plate is investigated. The Stroh-like formalism is used to model the anisotropy of the material. Based on the Ressiner-Mindlin plate theory and the eigenfunction expansion method, the characteristic equation for bending singularity order is derived and the order can be determined numerically. The numerical results show that the singularity orders strongly depend on the plate angle a. In addition, the singularity orders also depend on the principal orientation of the anisotropic material. The singularity orders for the case of are stronger than for that of. In the case of, to reduce the anisotropy is helpful to release the singularity at the notch tip. For the other case of, it is preferable to increase the anisotropy to reduce the singularity. The disappearance conditions of the bending singularity can be found based on the numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.