Abstract

The dynamics and spectroscopy of (J=0) acetylene bending degrees of freedom are investigated using a reduced dimensional Hamiltonian. This Hamiltonian is obtained by applying an adiabatic approximation to average the vibrational Hamiltonian over the ground state in the three stretch coordinates. Within this approximation, an effective bend force field is obtained by adjusting force constants in the adiabatic potential to improve agreement between experimental and theoretical eigenvalues. With minor modification, a global bend force field is determined that qualitatively describes the vinylidene vibrations and quantitatively describes the acetylene vibrations. This surface is compared to the results of a recent ab initio calculation. A dispersed fluorescence spectrum out of the excited à state, calculated from this model, is found to agree well with results of a recent experimental study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.