Abstract

Abstract We investigate the behaviour of weak solutions of boundary value problems (Dirichlet, Neumann, Robin and mixed) for linear elliptic divergence second order equations in domains extending to infinity along a cone. We find an exponent of the solution decreasing rate: we derive the estimate of the weak solution modulus for our problems near the infinity under assumption that leading coefficients of the equations do not satisfy the Dini-continuity condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.