Abstract
Pile foundations installed for offshore applications or in earthquake prone areas must be designed to withstand transient static and cyclic lateral loads that may occur in different lateral directions at different times. Research has chiefly been devoted to studying the behaviour of a pile subjected to one dimensional lateral loading and the influence of changing the lateral direction of this loading has not been widely considered. This paper presents the results from a series of centrifuge tests which involve multi-stage loading of a pile, considering changes in loading direction. The behaviour of a pile subjected to an unload-reload loop in a single direction is compared to that of a pile reloaded at 90° to the initial loading direction. When piles are reloaded at 90°, the set of rules that apply to one dimensional reloading become ineffective because an ‘effect of recent loading history’ governs the behaviour. In particular, local hysteresis loops are widened and the global instantaneous stiffness varies. These experimental findings are in accord with predictions from a simple numerical model, which defines the soil surrounding a pile using a series of twodimensional elastoplastic Winkler models along the pile length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Physical Modelling in Geotechnics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.